How to Thwart Birthday Attacks against MACs via Small Randomness

Kazuhiko Minematsu (NEC Corporation)

Fast Software Encryption 2010, Seoul, Korea

Introduction

Message Authentication Code (MAC)

- Use (Key, Message) to generate a fixed-length tag
- An auxiliary input, initial vector (IV) may exist

Three classes

- No IV -> deterministic MAC
- IV is random -> randomized MAC
- IV is nonce -> stateful MAC

Goal of adversary

Two oracles :

- Tagging oracle (O_T) returns a tag (and IV) for a queried message
- Verification oracle (O_V) returns a verification result for a queried transcript
- Goal is to produce a forgery (a valid transcript made w/o querying it to O_T)
- If this is hard, MAC is strongly unforgeable [BGK99])

Security measure

 Let adversary have q tagging queries and q_v verf. queries

• with messages of length at most ℓ (in n-bit blocks)

 Forgery probability (FP) is the maximum prob. of receiving "Valid" from O_V, denoted as

 $\operatorname{FP}_{\mathrm{MAC}}(q, q_v, \ell)$

Typical IV-based MAC : Hash-then-Mask (HtM)

- $T = H_{KH}(M) + F_{KE}(IV)$
- H_{KH} is ε -almost XOR universal (ε -AXU)

 $\max_{M_1 \neq M_2} \Pr[H_{\mathrm{KH}}(M_1) \oplus H_{\mathrm{KH}}(M_2) = y] \le \varepsilon$

possibly defined w/ input-block length (ε (ℓ)-AXU)
 Stateful HtM is highly secure :

 $\operatorname{FP}_{\operatorname{Stateful}\,\operatorname{HtM}}(q, q_v, \ell) \leq \varepsilon(\ell) \cdot q_v$

Problem of being stateful

Keeping state is difficult if (e.g.)

- Same key is used by many distant devices
- Key is in ROM and other non-volatile memory is not available

A natural substitute: use randomness

What will happen if IV is an n-bit random value? Then, the security degrades to $\operatorname{FP}_{\text{randomized HtM}}(q, q_v, \ell) \leq \underbrace{\frac{q^2}{2^{n+1}}} \varepsilon(\ell) \cdot q_v$ as IVs may collide, which leaks the sum of hash values (total break in general) \diamond That is, we have a birthday attack w/ q = $2^{n/2}$ M H_{KH} T = H(M) + F(U)IV = RandomT' = H(M') + F(U')F_{KE} if U=U' then T'+T' = H(M')+ H(M')6

Our goal

Improve O(q²/2ⁿ) term in the FP bound of n-bit-IV randomized HtM

so-called "beyond-birthday-bound-security"

 ...without expanding randomness! (longer IV is practically undesirable; comm. overhead, more random source, etc.)

Previous solutions

Long-IV solutions (outside our scope)

- Naïve 2n-bit rand. HtM
 - ✓ Use 2n-bit randomness, 2n-bit-input PRF
- MACRX [BGK99]
 - ✓ Use 3n-bit randomness, n-bit-input PRF
- n-bit-IV solution (our scope)
 - RMAC/FRMAC [JJV02] [JL04]
 - Use n-bit randomness, n-bit blockcipher (nice)
 - BUT proof needs the ideal-cipher model (dangerous)

Our contributions

- Two simple proposals
- RWMAC
 - Use n-bit randomness and 2n-bit-input PRF
- Enhanced Hash-then-Mask (Main contribution)
 - Use n-bit randomness and n-bit-input PRF
 - Very efficient : one additional PRF call to n-bit rand. HtM
- Blockcipher modes based on EHtM
 - Provably secure if blockcipher is a PRP (standard assumption)
 - Good alternatives to RMAC

First step : modify 2n-bit rand. HtM

 Encrypt H_{KH}(M) and U together with 2n-bit-input PRF, G_{KE}

• using ε -AU hash (coll. prob. is at most ε)

 Result is RWMAC, a rand. version of stateful MAC called WMAC [BC09]

Why beyond birthday bound ?

- Unless U and S=H_{KH}(M) collide together, tags are perfectly random (secure)
 - (U,S)-collision prob. for two distinct messages is ϵ /2ⁿ
- Note: for the same messages U-collision does not help
 Hence we obtain the security bound:

$$\operatorname{FP}_{\operatorname{RWMAC}[H,G]}(q,q_v,\ell) = q^2 \frac{\varepsilon(\ell)}{2^{n+1}} + q_v \left(2(n-1)\varepsilon(\ell) + \frac{1}{2^{\pi}}\right)$$

(w/ final tag truncation to π bits)

• If $\pi = n$ and ϵ 7 2⁻ⁿ, it is about $q^2/2^{2n} + q_v/2^n$

Next step: remove 2n-bit-input PRF

Naïve approach : RWMAC + some PRF domain extension w/ beyond-birthday-bound-security

known scheme of Maurer [M02] is not that efficient

 Idea : G's inputs of RWMAC are not arbitrarily chosen, thus full-fledged PRF might not be needed

... but how?

Enhanced Hash-then-Mask (EHtM)

 We insert one additional (independently-keyed) n-bit PRF before masking w/ a simple preproc. (x,y)->(x,x+y)

H is unchanged (ε-AXU)

Security bound of EHtM

The bound is :

$$FP_{EHtM[H,F_1,F_2]}(q,q_v,\ell) \le \frac{q^3}{6} \left(\frac{\epsilon(\ell)}{2^n} + \frac{1}{2^{3n}}\right) + q_v \left(4\epsilon(\ell) + \frac{1}{2^\pi}\right)$$

(w/ final tag truncation to π bits)

- If $\pi = n$ and ϵ 7 2⁻ⁿ, the bound is about $q^{3}/2^{2n} + q_{v}/2^{n}$
 - not as good as RWMAC bound, but still an improvement over HtM's bound q²/2ⁿ + q_v/2ⁿ

Proof idea

Compare the finalizations of RWMAC and EHtM

- If BAD = [U_i=U_j ≠ U_k, S_i ≠ S_j = S_k] for some distinct (i,j,k) occurs, the difference between two cases is detectable,
- as output of Case2 for input (U_k,S_i) is predictable (T_i+T_j+T_k), while Case1's output for (U_k,S_i) is random

Note: similar observation was seen in MACRX and Maurer's PRF domain extension

15

Proof idea (contd.)

• Add ε -AXU hash function to both cases

- Now BAD occurs at most prob. ε /2ⁿ for any (i,j,k), (both under EHtM and RWMAC) thus the difference is detectable w/ probability O(q³ ε/ 2ⁿ)
- If BAD does not occur FP of EHtM is the same as that of mod. RWMAC, which is easy to derive (the same as RWMAC)

◆ Details are more complicated ...

Quick summary

Roughly, the result can be summarized as;

Blockcipher modes

 Next, we try to instantiate EHtM w/ a blockcipher (which is assumed to be a PRP)

PRP-based finalizations needed

 Main obstacle: PRP-PRF switching lemma will bring O(q²/2ⁿ)-security degradation

A CBC-based Mode: MAC-R1

An Alternative Mode: MAC-R2

Proofs of MAC-R1 and R2

Just a combination of previous results

- CBC-MAC collision prob. [BPR05] and differential prob. [MM07]
- For R1, Bernstein's lemma [B05] instead of switching lemma
 - gives an improved unpredictability (but not indistinguishability); only applicable to FP evaluation
- For R2, Lucks's TWIN construction [L00]
 ✓ taking the sum of two PRP distinct inputs yield a PRF w/ beyond-birthday-bound-security

Comparison of MAC modes

VERY roughly, MAC-R2 bound is (q+q_v)³/2²ⁿ

MAC-R1 bound is something worse (difficult to see from the table)

MAC	Key	Rand	Blockcipher Calls	Security Bound (w/o coeff.)
CMAC	1	_	$\lceil M /n \rceil + 1 \text{ (precomp)}$	$\sigma^2/2^n \text{ or } \ell^2 (q+q_v)^2/2^n$
EMAC	2	_	$\lceil (M +1)/n\rceil + 1$	$d(\ell)(q+q_v)^2/2^n$
RMAC	2	n	$\left\lceil (M +1)/n \right\rceil + 1$	$\sigma/2^n$ or $\ell(q+q_v)/2^n$ (with ICM)
MAC-R1	2	n-1	$\lceil (M +1)/n\rceil + 2$	$\left(d(\ell)q^3/2^{2n} + d(\ell)q_v/2^n\right) \cdot \delta(2q + 2q_v)$
MAC-R2	2	n-2	$\lceil (M +1)/n\rceil + 4$	$(d(\ell)q^3 + q_v^3)/2^{2n} + (q + d(\ell)q_v)/2^n$

 σ = total message blocks

tag length is n bits

$$\left(\delta(a) = \left(1 - \frac{a-1}{2^n}\right)^{-\frac{a}{2}}, \mathsf{d}(\ell) \approx \log \ell\right)$$

note: CMAC bound was improved to $O(\sigma q/2^n)$ by Nandi

22

A graphical bound comparison

n=128, $q_v = q^{1/2}$, fixed message length $\ell = 2^{20}$

- MAC-R1 bound quickly reaches 1 after 2⁶⁴
- R1, R2 are even better than RMAC for a certain range
 - due to the difference in the shapes of q/2ⁿ (RMAC) and q³/2²ⁿ (ours)

A numerical comparison

• Let $2^{-\gamma}$ be the maximum acceptable FP

- We compute the maximum amount of data processed by one key
 - When n=64, R1 and R2 can process order of terabytes

MAC	$n = 128, \gamma = 20, \ell = 2^{20}$	$n = 64, \gamma = 20, \ell = 2^{10}$
CMAC	125.46 Pbyte	14.60 Mbyte
EMAC	$10^{7.15}$ Pbyte	3.25 Gbyte
RMAC	$10^{15.97}$ Pbyte	512.94 Gbyte
MAC-R1	$10^{11.97}$ Pbyte	40.41 Tbyte
MAC-R2	$10^{14.77}$ Pbyte	65.65 Tbyte

Conclusion

- Two randomized MAC schemes w/ beyond-birthday-bound-security wrt IV length
 - RWMAC : n-bit randomness, 2n-bit-input PRF
 - EHtM : n-bit randomness, n-bit-input PRF, very efficient (only one add. PRF call from HtM)
- Blockcipher modes based on EHtM
 - Secure, efficient MACs using 64-bit blockciphers

Thank you!